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Abstract

This paper derives a new variable step 3-point block method based on Backward
Differentiation Formula (BDF) for solving stiff Ordinary Differential Equations
(ODEs). The strategy involved in the developed method is to control the step
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size at each iteration to optimize the precision and produce three solution
values simultaneously at each step. The method is analyzed in having the
conditions for zero stability and found to be of order 6. The stability regions of
the method are also investigated and presented in distinct graphs. The proposed
method is compared to MATLAB’s suite ODEs solvers, namely, odel5s and
ode23s. Numerical results obtained are provided to support the enhancement of

the method in terms of accuracy.
1. Introduction

We consider block backward differentiation formula (BDF) for the
solution of stiff first order ordinary differential equations (ODEs) of the

form
¥ = flx, ), ¥xo) =0, a<x<b. 1)

Implicit methods on solving stiff ODEs are known to perform better
than explicit ones. Solving stiff ODEs using BDF method first was
proposed by two chemist and their work can be found in [3]. Dahlquist [4]
tried to solve stiff ODEs and explained the difficulties in differential
equation solvers that may appear in integrating stiff problems. The
implementation of the BDF methods for solving stiff ODEs was discussed
by Gear [6] and he became one of the well-known researchers in the
study of stiff ODEs. The order and the accuracy of BDF method for
solving stiff ODEs were improved by Cash [2] through adding a future
point, the method was called extended block BDF. Block implicit methods
first were proposed by Milne [10] and his idea using a Runge-Kutta
method later was extended by Rosser [12]. Convergence and stability
properties of one-step implicit block method can be followed in [13, 16]. A
class of block implicit method for solving stiff ODEs and A-stability
properties can be seen in [17]. Block methods on solving stiff ODEs via
backward differentiation formulae were developed in recent years and
can be studied in [7]. Furthermore, variable step 2-point block BDF
method for solving stiff ODEs can be followed in [8, 11, 14, 18]. A
formulation of 3-point block BDF using variable step size of order 6 was
obtained by [1] while the method did not deserve the condition for zero
stability therefore the formulae can not be acceptable.
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The aim of this paper is to introduce a new formula of variable step
3-point block backward differentiation formula to approximate three
points cuncurently at each iteration. In the following sections of this
paper, the condition for zero stability and the analysis of the stability
regions are illustrated. The numerical results obtained of the method are
compared with stiff ODEs solvers in MATLAB defined as odelbs and
ode23s. The advantage of the proposed method is that, the solutions are
approximated at more than one point simultaneously to improve the
accuracy of the method.

2. Derivation of Variable Step 3-Point Block BDF Method

In a 3-point block BDF method, three solution values y,.1, ¥,42, and
Yn+3, With step size h are computed simultaneously in a block using four

back values y,,_3, ¥,_2, Y51, and y,, with step size rh (Figure 1).

L, rh rh  , rh h h ,_h
| | H | |

Yn-3 Yn-2 Yn-1 In Yn+1 Yn+2 Yn+3

Figure 1. Interpolation points involved in the 3-point variable step
BBDF.

In above figure, r is the step ratio in a block. We limit the amount of step
size increase to ensure zero stability. In this case, we consider r =1, 2,
1000

1196°
increasing the step size by a factor of 1.196. The motivation behind the

and

which corresponds to constant step size, halving and

choice of each value of r are as follows; first is to optimize the total
number of steps and the second is that each value used ensures a zero
stable formula. The interpolating polynomial P,(x) of degree k, which
interpolates the points (x,_3, ¥,-3), (X9, ¥n-2)s s (X,43, Ypig) 1S

defined as

k
Py(x) = ) Ly j(0)y(%nea-); @
Jj=0
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where

X — X ;
L, =|| nt3=L for j=0,1,..., k (k =6),
k’](x) 0 Xn+3-j T Xn+3-i o o ( )

i#]
the associated polynomial for (2) can be written as
P(x) =

(x - xn—S)(x - xn—2)(x ~—Xn-1 )(x ~—Xn )(x — xn+1)(x - xn+2)
(%n+3 = %p-3) (Xps3 = po9) (Xpag = Xno1) (Xpig = %0 ) (Fnag = Xpe1 ) (Fnag — Xnao

)yn+3

(2 -2y 3)(x — 2y 9) (2 =2, ) (2 =2 ) (% = 249 ) (% = %p43)
(xn+2 ~—Xp-3 )(xn+2 Xn-2 ) (xn+2 ~Xp-1 )(xn+2 ~Xn ) (xn+2 ~Xn+l )(xn+2 - xn+3)

Yn+2

(x — xn—S)(x - xn—Z)(x ~—¥n-1 )(x - xn)(x — xn+2)(x - xn+3)
(xn+l —Xp-3 ) (erl —Xp-2 ) (xn+1 —Xp-1 )(xn+l —Xpn ) (xn+1 —Xn42 )(xn+l - xn+3)

Yn+1

(x ~Xn-3 ) (x ~Xn-2 ) (x ~Xn-1 ) (x ~ X4l ) (x ~ Xn+2 ) (x xn+3)
(xn - xn—B)(xn —Xp-2 )(xn - xn—l)(xn - xn+l)(xn ~ Xn+2 )( Xn n+3) In

+

(x Xn— 3)(x Xn— 2)(x xn)(x xn+1)(x xn+2)(x xn+3)
(xn 1~ Xp- 3)(xn 1~ Xp- 2)(xn 1 _xn)(xn 1~ n+1)(xn 1~ n+2)(xn—l _xn+3)

In-1

+ (x — xn—S)(x — xn—l)(x — xn)(x — xn+1)(x — xn+2)(x — xn+3)
(xn—Z ~Xp-3 ) (xn—Z ~Xp-1 ) (xn—Z ~Xn ) (xn—Z ~Xn+l ) (xn—Z ~ Xn+2 ) (xn—Z ~Xn+3 )

Yn-2

(x Xn— 2)(x Xn— 1)(x xn)(x xn+1)(x xn+2)(x xn+3)
(xn 3~ Xp— 2)(xn 3~ Xp- 1)(xn 3~ xn)(xn 3~ xn+1)(xn 37 xn+2)(xn 37 xn+3) In=s:

3

~ Xn+l

h

Define s = = and replace x = x,,; + sh in (3), gives

p(x) = p(xp,41 +sh)

(s+1+3r)(s+1+2r)(s+1+r)(s+1)s(s—1)
6(3+3r)(3+2r)(3+r) n+3

(s+1+3r)(s+1+2r)(s+1+r)(s+1)s(s—2)
(-2)2+3r)(2+2r)(2+T) Yn+2

(s+1+3r)(s+1+2r)(s+1+r)(s+1)(s—1)(s—2)
20+3r)1+2r)1 +1)
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(s+1+3r)(s+1+2r)(s+1+7r)s(s—1)(s—2)
+ In
(- 36)r®

N (s+1+3r)(s+1+2r)(s+1)s(s—1)(s —2)
2r3(-1-r)2+7)(=3-7r)

n—

N (s+1+3r)(s+1+7r)(s+1)s(s—1)(s—2)
2r3(1+2r) (-2 - 2r) (3 + 2r)

n—

(s+1+2r)(s+1+7)(s+1)s(s—1)(s—2)

+ 3 Yn-3- (4)
(=61 +3r)(-2-3r)(3+3r)

Differentiating (4) with respect to s and substituting s = 0, 1, and 2 gives

—(6r% +5r+1) . 6r2 +5r+1
18-+ 3)(2r + 3) "3 T 2(r + 2)(3r + 2) Tn*2

hfn+1 =

N —(6r® —11r2 —18r - 5) N —(6r® +1172 + 6r +1)
% +1)@r +1)(@r +1) L 1873 In

N 6r2 + 5r+1 - - (Br+1) y
-1 -2
P +1)(r+2)(r+3) " 2r3(2r +1)(2r + 3) "

2r +1
+—3 In-3; ®)
9r°(3r +1)(3r + 2)
By = 2(3r% + 8r + 4) , 3r’ +22r + 36r + 16
n2 =901 8)(2r+3) "3 T 20+ 1) (r + 2) (3 + 2) 02
(- 2)(3r% + 8r + 4) . 3r3 +11r2 +12r + 4
@r+1)@r+1) Ot 183 In
L (2)Br+2) - 3r2 + 8r+4 y
S < Yn -2
Pr+2)r+3) " 2% +1)@r+1)@r+3)
+ (_2)(r + 2) . (6)

Y -3
9r3B3r+1)(3r+2)
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22r3 +143r% + 270r + 153

(- 9)(2r% + 9r +9)

h&+3:

Yn+3

6(r +1)(r + 3)(2r + 3)

9(2r? + 9r +9)

2(r +2)(3r + 2)

Yn+2

—(2r3 +117%2 +18r + 9)

e+ )@re1) T o3

9(2r + 3) (-9)(r + 3)

Br2)r+3) "

. 2r2 + 9r + 9 y
-3
33+ 1) (3r +1)(3r+2)

00
Repl =1, 2, d—
eplacing r an 1196

r3@2r +1)(2r + 3)

n

(7

nto (5), (6), and (7), respectively, gives the

coefficients of the method as given below, which are stored in the codes.

The values of r chosen ensure the zero stability of the method.

For r =1,

— L + i _ E + E _ % 2 + hf
Yn+1 = 35 Yn-3 35 Yn-2 7 Yn-1 7 Yn 35 Yn+2 + 35 Yn+3 n+ls

o215 50100 150 10 60,
In+2 = 77 Yn-3 77 Yn-2 77 Yn-1 7 In 77 Yn+1 — 77 Yn+3 77 YUn+2;

__ 10 L 24 _7 L 400 - 150 120 + 20
Yn+3 = 147 Yn-3 49 Yn-2 49 Yn-1 147 Yn 49 Yn+1 t 49 Yn+2 49 n+3-:

(€))

For r = 2,

2 L 21 245 1225 3675 .35
In+l = 7359 Yn=8 T 996 Yn-2 T 5gg Yn-1 T 995" In T Tyggq Yn+2 T 177 Ine3

210
hﬁud’

! 16 12 16 1536 512

Yn+2 = 395 Yn-3 7 g75 Yn-2 T 155 In-1 T 55 In T gyg In+l T 550 Yn+s

24
*‘Eﬁihfﬁ+2’
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_ 175 , 405 3969 11025 2835
Yn+3 T T 46112 Y3 T 11528 772 T 23056 V1 T 11528 77 T 1441 2L
99225 630
29220 LUV
1000
F - WY
= 1796
_ 311249130548929261 , 4828453731348401349
Yn+l T T 5891848556718750000 "3 T 14139637164296875000 2
_ 5614735319756923077601 , 23525925341746689
4922334619068125000000 "1 T 10121429609375000 "
_ 385670907241749 , _42852323026861
740470187020480 "2 T 1037962484956705 ~+3
, 920289798 | .
647771495 't
_ 21912216496200784 _ 163183509197182087744
Yn+2 = 439892639115234375 ° "3~ 460625417024158203125 "2
498329846860832181 | 683744261438016
473334468126953125 ° "1~ 412671724609375 °"
358685514196992 _ 39853946021888
177091183950373 "1 ~ 338559105010357 ~ "+3
156891024
* 911287923 n+2
, . _ _ 20521277884988304247681 155864674783310403807
n+3 —

~ 145166330275394093750000 y"*S_I_164050399688328125000y’”‘f2

_ 231213758866944231807 . 773863453129498281
87055531248875000000 °"~! " 205319649171875000 °"

_ 38058858350631063 Jr_38058858350631063
11013687633475597 "+ T 15020909583805888 *"+2

5278170546
* 13140457547 In+s: (10)
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3. Order of the Method

This section derives the order of the method corresponding to the
equations in (8), (9), and (10). First, we consider the method (8) while
r = 1. It can be rewritten as

L1 .8 6 16 24 2
35 Yn-3 35 Yn-2 7 Yn-1

+ + == - = Ehf
7 IYn T Yn+1 35 Yn+2 35 IYn+3 = 7 Yn+1

_2 15 _50 L 100 - 150 4 + 10
77 Yn-3 77 Yn-2 77 Yn-1 77 Yn 77 Yn+1 T Yn+2 77 Yn+3
60
= ﬁhfn+2’
10 24 75 400 150 120

+myn—3 _Eyn—.‘z +Eyn—1 —myn +Eyn+l —Eymz + Yn+3

20
= S (D
The matrix form of (11) is associated with
0 1] .8 6 _16 1,
0 2l B s 10
77 | [Tt 77 77 77 ||t
0 10 2 T a0
I 147 | -3 49 49 147 | L On
24 2] (12
1 35 ~ 55 || I - 0 | [/fns1
150 10 60
+ —7—7 1 ﬁ Yn+2 ﬁ 0 fn+2 (12)
150 120 20
19 19 1 | Lones 0 0 29 | Lfnss
Let
F 1 [ 8 [ 6 ]
0 = _° 2
35 35 7
ag =10], 07 =0, ag = _2 g = 15 oy = _50
0 o 2 778 77 |77 77|
10 24 75
0 0 | 147 "9 19
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[ 16
T
100
T

400

A5 =

| 147

Be

, Og

1

_150
77
150
49

,B7 =

_ﬁ_
35
,(X7= 1 ,(X8=
120
49 | L
0 0
60
W:BS_ 0
20
0 19

The linear difference operator L is defined by

8
Lly(x), h] = D lajy(@ + jh) = hB,y'(x + jh)].

Jj=0

35

2

10
77

1

57

(13)

Expanding the function y(x + jh) and its derivative y'(x + jh) as Taylor

series around x and substituting in (13) leads to

L[y(x); ] = Coy(x) + CrhyD(x) + Coh2y P (x) + -+ C,nTy D) + -,

(14)

where C, are constants. The difference operator (13) and the associated

method (11) is considered of order p if ¢y =¢; =--

¢p+1 # 0. In this case,

8
Co = Z(l] =
j=0

8
G = Z(
j=0

-3

J

0

0,

8
J'Otj)—ZBj =0,

j=0

%) <
o —;(mn:o,

:cp:O and
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8 5 8 4
N Gey) (J°B;) 0
C5":E: Bl L4 T
Jj=0 Jj=0

N :ioﬁan_ B
j=0

o & 6l
4
8 () (%)) o :
B Jioj J°Bj) | 10
”‘;;w _; e | B39 |70
- - 20
313 0

Therefore, the order of the method (8) is 6 and the error constant is
determined by

4
245
10
539
_20

| 343

Cr =

Applying a similar procedure to the method (9) and (10) shows that the
order of them is 6.

4. Stability of the 3-Point Block BDF Method

In this section, we discuss about the conditions for the stability of the
method in (8), (9), and (10). We start by the following definitions:

Definition 1 ([9]). A method is said to be zero stable if all the roots of
first characteristic polynomial have modulus less than or equal to unity

and those of modulus unity are simple.

Definition 2 ([9]). A method is said to be absolutely stable in a
region R for a given hA if for that hX, all the roots r, of stability

polynomial n(r, AL) = p(r) — hdo(r) = 0 satisfy |r| <1, s =1, 2, ..., k.
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Definition 3 ([5]). A method is said to be A-stable if the stability
region covers the entire negative left half plane.

The stability regions of the method are determined by substituting
linear test problem

y' =iy (A <0, L complex),
into Equations (8), (9), and (10). We obtain the following form:

AY,, = BY,,_; + CY,, o, (15)
where A, B, and C are the matrix coefficients and can be specified based
on the coefficients in (8), (9), and (10), respectively.

We define n = mr, where m is the block number and r is the number

of points in the block. Here, r = 3 and n = 3m. Hence,

Y3m+1 In+1 Y3(m-1)+1 Yn-2
Yo =|Y3ms2 | = |Yns2 5 Ymo1 = |Y3(m-1)2 | = | Yn-1 |5
Yam+3 Yn+3 Y3(m-1)+3 Yn
and
Y3(m-2)+1 Yn-5
Yin-2 = |Y3(m-2)+2 | = | Yn-4 |-
Y3(m-2)+3 Yn-3

The stability polynomial of the method, R(%, l;), where h = h\ is defined
by

det(At? — Bt - C),

while the absolute stability region of the method is determined by solving
det(At? — Bt - C) = 0 in the hA plane. The following gives the absolute
stability regions of the method for the chosen step sizes, r =1, 2, and

1000

1196’ respectively,
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. o 1 9 40 .3 232 .37 1852 .4 20640 47
@) Rt h) = —7aoaat™ + 507t * 36411 "t 2a01t T 26411l "
2400 475 _ 286568 5 72216 5 109920 509
26411 79233 26411 26411
10673 ¢ 109036 ,g; 8880 ,672 14400 6,3
16 _ 55 h2 55
* 3773 26411 - ' 3773 26411
= 0; (16)
) N o 22257 .3 243 3. 359023 4
(i) R(t. h) = oeras00’ * 42653600 " 1066340° " * 1332925
, 2029923 ;2205 ;p 157887 5 11586078 57
10663400 106634 20350 1332925
1460592 572 | 1996367 .6 1506528 6, . 202365 672
566585 © ' * 266585 ¢ 121175 L "t 24935 L 1
__127008 673
53317 L
- 0; 17

13647962636267227918343141245775554499 2
219541714200576769268330944213867187500000

(iii) R(¢, h) = —

N 9490509363205766214390132478878357434499 3
219541714200576769268330944213867187500000

N 556974234307066011541528846992927579 37
23109654126376502028245362548828125000

N 24804016848454261960506657711429351187t4
21954171420057676926833094421386718750

+_115028677210765616692778596732358021703t4ﬁ
87816685680230707707332377685546875000

N 2801303270263832633162046362322 472
18784317792562718226167353515625

__5154961634679672572149818076542327t5
1405066970883691323317318042968750

__1297010472298974226423732248769653t5ﬁ
702533485441845661658659021484 375
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~16434958044578911094654822596929444 572
3512667427209228308293295107421875

922666265893348903771816 ¢
369678463048535435528503

1265535028592194405952407968

—_— 6A
359697144546224978769233419 th

3556038538825254219702996 .62
1848392315242677177642515

4075346290304308760894016

- t8h3
9617570709792111731797685

= 0. (18)

For zero stability, we set h =0 in (16), (17), and (18) to obtain the first

characteristic polynomial as

10673 .5 286568 5 1852 .4 40 3 1 .9
- - ~0: (19
O 3773 " ~ o233 ¢ *2a01’ T2a0o1’ " wezss’ =& (19
(i) 1996376 6 _ 157887 5 859023 4 22257
266585 20350 1332925 ' 42653600
1 2 A
156536000 = O (20)

(iif) + 922666265893348903771816 _¢
369678463048535435528503

~ 5154961634679672572149818076542327 /5
1405066970883691323317318042968750

24804016848454261960506657711429351187 4
21954171420057676926833094421386718750

9490509363205766214390132478878357434499 £3
219541714200576769268330944213867187500000

_13647962636267227918343141245775554499 2
219541714200576769268330944213867187500000

=0. 21)
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The roots obtained from (19), (20), and (21) are listed below, respectively,

(1) ¢ = —0.02041446823,¢t = 0,t = 0, t = 0.0007327983430,
t =0.2982439521,t = 1;

(i1) ¢ = —0.001881407546, ¢t = 0, ¢t = 0, t = 0.00004393458062,
t = 0.03787462228, ¢t = 1;

(iii) ¢ = —0.03559407865, ¢t = 0, ¢t = 0, t = 0.001387943697,

t =0.5041742684,t = 1.

As all the roots have modulus less than or equal to unity, so the method

is zero stable when r =1, 2, and % The stability regions of the
1000 -

method when r =1, 2, and 1196 are shown in Figures 2, 3, and 4.

2 - m
Oy,
ay
y’a . stable
ﬁ =) -,
\\

h Y

unstable

unstahle /

] /" stable
\\"’%\.‘.,_‘____,,,..,.-v“‘“"'c“.v

Figure 2. Stability region when r = 1.
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stable

Figure 3. Stability region when r = 2.

£ unstable
unstable
\_ /
| G g o T T T T T T
i \Q\O. 4 6 g 10 12 14
unstable

swble\\u\_j \-/

Figure 4. Stability region when r =

unstable

stable

1000
1196 °

63
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The stability region while r =2 in Figure 3 covers the whole
negative left half plane, so the method is considered as A-stable. The

stability regions when r =1 and r = %, which are shown in Figure 2

and Figure 4, respectively, almost cover the entire negative left half
plane, hence the method is stiffly stable.

1000
1196°
stability and absolute stability of the method for the r tested are listed in
Table 1.

To obtain r = different values of r have been tested. Zero

Table 1. The values of r tested for the 3-point

1
r - Status of the method
1
3 2 not zero stable
10
=19 1.9 not zero stable
5
r= 3 1.6 not zero stable
2
r= 3 1.5 zero stable not absolutely stable
5
r=+ 1.4 zero stable not absolutely stable
10
=13 1.3 zero stable not absolutely stable
5
r=% 1.2 zero stable not absolutely stable
= % 1.1198 zero stable not absolutely stable
= % 1.1197 zero stable not absolutely stable
1000

1.1196 zero stable and absolutely stable
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From Table 1, it is seen that when r = %, %, and g the method is

not zero stable as it does not satisfy the Definition 1. Therefore, the

3-point block BDF of variable step size formulated by [1], is not
acceptable as the method is not zero stable when r = % Choosing

2 5 10 5 1000 1000 .
r= 3°7°13° 6’ 1198° an 1197 gives a zero stable method not

absolutely stable. For example, if we set h =-3.00 in the stability

polynomials obtained for r = 1(1)82 and solve it for £, it gives at least one
root bigger than one. Therefore, by the Definition 2, the method is not
1000 ,

absolutely stable for r = Setting different amount of h for

1197

1000 5 10 5 2 . .. .
r= 11_98 ’ g, ﬁ, 7, and g gives a similar results, which shows that

the method is not absolutely stable in the r chosen.

Figures 5-10 are provided to show the stability regions when

. _ 1000 1000 5 10 5 .2
T1197°1198°6° 1377’ T 3
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stable
unstable
E 2 4 6 8 10 12 14
unstahle
-5 unstable
Sl stable
Figure 5. Stability region when r = M
1197
stable

e unstable

unstable

Figure 6. Stability region when r = %
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stable_4p - \\ stable
& . -,
| N\
5] unstable
unstable
= 0 T T !
'J’ _ 5 10 e
unstable |
i unstable
_5—
- \’
K. /
Stable‘\&\_/tablc

Figure 7. Stability region when r = %

stahlf/ 10 ", f\ta:lc
I 4
unstable
5 unstable
5N T s 10 15
j unstable
-
unstahle
-IIJ- l,'{table
- \\\-’/

Figure 8. Stability region when r = %

67
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"8,
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5. Implementation of the 3-Point Block BDF Method

Newton’s iteration is applied for the implementation of the method.

First, we define the error in the (i)™ iteration as

exror) _ [y ()

exact ~ Yapproximate |’
and the maximum error is given by

MAXE = max (error(i)).

1<i<TNS

The abbreviation TNS gives the total number of steps.

Let ygijl-)j =1,2, 3 denote the (i +1)™ iterative values of y,, i
define

@@+1) _ , (+1) @) .
n+tj = Yn+j T Ynajo J=123.

e
The 3-point block BDF method can be written as
Ynil = G hfpi1 + Brynse + Y1Vne3 + M1s
Yn+2 = Oghfpio + BoYni1 + V2Vnes + Mo,
Yn+3 = 03hfnig + B3Yns1 + V3Yn+2 + N3, (22)
where o, B;, and v;, i =1, 2, 3 represent the coefficients when r =1, 2,

and respectively. n;, ng and ng represent the back values. Let

1000
1196°
Fi = ype1 = B1Yns2 = Y1Vn+3 — 0P — Mo,
Fy = —BoYni1 + Yn+2 — Y2Yne3 — 02hfpi2 — M2,
F3 = =B3Yni1 — ¥3Vn+2 + Yne3 — @3hfpi3 — 3. (23)

Newton’s iteration is defined as

‘ ‘ oF® .
iy = _[6y(?)- R =12
n+j
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Hence, Newton’s iteration can be defined in the form

i 8F(i) F(i) 8F(i) T
yr(;:ll) ygll 211 gﬂz 233 Fl(l)
. . aF( ) aF(‘) aF(l) ;
ySL:%) = ySLJ)r2 - (l) (l) (L) : F2( g (24)
. n+1 n+2 n+3 .
] (ks |eRD  oRy) e | |FY
(l) (l) (l)
n+1 n+2 n+3
Equation (24) is equivalent to
[ apl(i) F(i) 6F1(i) 1
W ol | [4) (R0
ory) aF(l) ory) (”%) | B 25)
(L) (L) ay(l) Cn+
n+1 n+2 n+3 .
211 gﬂz oy 233 J
Jacobian matrix
Let J denote the Jacobian matrix in (25), then
of ) of{!) o), |
arh (;1 B —oqh (51 - 11— oqh (Sl
ot o e
afnl afnl fnl
J =|- BQ (th (;)2 1- Otzh (52 Y2 Otzh (;2
oy g %
6fnl 6fnl éfnl
— B3 —oagh (53 Y3 — ogh (53 agh (;3
L Yni1 Yn42 6yn+3
(26)
(L+1)

Therefore, the values of e, -/ j =1, 2, 3 can be approximated and the

(L+1)

solutions y, >/ j =1, 2, 3 are computed from
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@+1) _ @) (@+1) . _
yn+j _yn+j+en+j’ ]_192537

1000

=1, 2 —.
when r , 2, and 1196

Choosing the step size

Choosing the step size is an important factor in the reduction of the
number of iterations. The step size selection falls into three strategies.
Using a prescribed tolerance value (TOL), an initial step size is
determined. A test is conducted to compare the local truncation error
(LTE) with TOL, where

k k-1
LTE = |y} =533 k=6

If the LTE < TOL, the step is considered as successful (IST). At this step,
the previous step size is maintained (corresponding to using r = 1) and

the following test will be conducted:

1

TOL 1
hpew = ¢ x holg X(m)k’
where ¢ is the safety factor, k£ is the order of the method and is equal to

6. hpew and hyg are the step size for the current and previous blocks,
respectively. Here ¢ is 0.5. If Ao, > (1.196) x hy)q, then Ay, = (1.196) x

1000
1196 °
hand, if LTE > TOL, the step size is halved and we regard this step as a
failed step (ISFT) (corresponding to the formula when r = 2).

holg- This corresponds to using the formula r = On the other

6. Numerical Results

In this section, the numerical results of the 3-point block BDF

method of order 6 on a set of stiff problems for tolerances 10_2, 10_4, and

107 are tabulated and compared with MATLAB’s stiff numerical solvers
for ODEs as odel5s and ode23s [15]. The maximum global error and the
total number of steps for each problem are given. The test problems and
their solutions are listed as
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Problem 1 ([18]).

y' = —20y + 24, ¥(0) = 0, 0<x<10.

Exact solution

_6_6 20«

Problem 2 ([6, 8]).
y' =-100(y — x) + 1, ¥(0) =1,
Exact solution

-100x +

yx)=-e x.

Eigenvalue: A = —100.
Problem 3 ([8]).
i = -1002y; +1000y3, 1(0) = 1,

yo =y — y2(1+ 2), ¥2(0) = 0.
Exact solution

Y= e 2%,

Yo = e .

Eigenvalues: Ay = -2 and A9 = —1.
Problem 4 ([18]).

¥h = —999y; —1999y5,  ¥2(0) = 2.

Exact solution

¥y = 2¢™% _ e—lOOOx

’

yo = e 4 e—lOOOx'
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Eigenvalues: A = —1 and A9 = —1000.

The notations used in the tables, are listed below:

3BBDF 3-point variable step block BDF method.

TNS the total number of steps.
TOL tolerance value.
MAXE maximum global error 309.

Table 2. Comparison for Problem 1

TOL Method TNS MAXE

1072 odel5s 29 8.700e-3

ode23s 19 4.800e-3
3BBDF 97 2.1678e-6

1074 odel5s 61 1.7046e-4

ode23s 43 2.7400e-4
3BBDF 123 2.1979-8

1076 odelbs 96 2.7175e-6

ode23s 148 1.3309e-5
3BBDF 150 1.1389e-10

Table 3. Comparison for Problem 2

TOL Method TNS MAXE

1072 odelbs 28 8.4000e-3

ode23s 19 4.5000e-3
3BBDF 105 1.0775e-5

1074 odelbs 60 1.6621e-4

ode23s 42 2.5683e-4
3BBDF 131 1.1068e-7

1076 odel5s 100 2.7506e-6

ode23s 143 1.2514e-5
3BBDF 158 1.3571e-9
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Table 4. Comparison for Problem 3

TOL Method TNS MAXE

1072 odelbs 29 5.2000e-3

ode23s 25 1.1000e-3
3BBDF 92 1.7933e-7

1074 odel5s 55 8.5506e-5

ode23s 118 6.9774e-5
3BBDF 117 4.9733e-9

1076 odel5s 197 1.0790e-6

ode23s 773 2.8081e-6
3BBDF 144 9.6267e-10

Table 5. Comparison for Problem 4

TOL Method TNS MAXE

1072 odel5s 38 1.760e-2

ode23s 23 7.3000e-3
3BBDF 118 1.0267e-4

1074 odel5s 90 1.8559e-4

ode23s 68 3.6837e-4
3BBDF 144 1.0882e-6

1076 odelbs 162 3.9569¢-6

ode23s 288 1.7039e-5
3BBDF 171 1.1006e-8

From Tables 2-5, it can be observed that the maximum global error
for each given tolerance has decreased in the 3-point block BDF method
which shows that the method converges faster for all the problems tested

in comparison with odel5s and ode23s.
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7. Conclusion

A formulation of a block BDF that computes three points
concurrently for the solution of stiff ODEs is considered in this paper.
The method is analyzed and is found to be A-stable when r = 2 and

1000
1196

that the code developed is a better solver for stiff problems in reducing

the error in comparison with stiff MATLAB’s solvers. In fact, the method

stiffly stable when r =1 and r The results obtained indicate

outperformed the odel5s and ode23s in terms of accuracy.
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