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Abstract 

This paper derives a new variable step 3-point block method based on Backward 
Differentiation Formula (BDF) for solving stiff Ordinary Differential Equations 
(ODEs). The strategy involved in the developed method is to control the step 
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size at each iteration to optimize the precision and produce three solution 
values simultaneously at each step. The method is analyzed in having the 
conditions for zero stability and found to be of order 6. The stability regions of 
the method are also investigated and presented in distinct graphs. The proposed 
method is compared to MATLAB’s suite ODEs solvers, namely, ode15s and     
ode23s. Numerical results obtained are provided to support the enhancement of 
the method in terms of accuracy.  

1. Introduction 

We consider block backward differentiation formula (BDF) for the 
solution of stiff first order ordinary differential equations (ODEs) of the 
form 

( ) ( ) .,,, 00 bxayxyyxfy  ==′   (1) 

Implicit methods on solving stiff ODEs are known to perform better 
than explicit ones. Solving stiff ODEs using BDF method first was 
proposed by two chemist and their work can be found in [3]. Dahlquist [4] 
tried to solve stiff ODEs and explained the difficulties in differential 
equation solvers that may appear in integrating stiff problems. The 
implementation of the BDF methods for solving stiff ODEs was discussed 
by Gear [6] and he became one of the well-known researchers in the 
study of stiff ODEs. The order and the accuracy of BDF method for 
solving stiff ODEs were improved by Cash [2] through adding a future 
point, the method was called extended block BDF. Block implicit methods 
first were proposed by Milne [10] and his idea using a Runge-Kutta 
method later was extended by Rosser [12]. Convergence and stability 
properties of one-step implicit block method can be followed in [13, 16]. A 
class of block implicit method for solving stiff ODEs and A-stability 
properties can be seen in [17]. Block methods on solving stiff ODEs via 
backward differentiation formulae were developed in recent years and 
can be studied in [7]. Furthermore, variable step 2-point block BDF 
method for solving stiff ODEs can be followed in [8, 11, 14, 18]. A 
formulation of 3-point block BDF using variable step size of order 6 was 
obtained by [1] while the method did not deserve the condition for zero 
stability therefore the formulae can not be acceptable. 
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The aim of this paper is to introduce a new formula of variable step  
3-point block backward differentiation formula to approximate three 
points cuncurently at each iteration. In the following sections of this 
paper, the condition for zero stability and the analysis of the stability 
regions are illustrated. The numerical results obtained of the method are 
compared with stiff ODEs solvers in MATLAB defined as ode15s and    
ode23s. The advantage of the proposed method is that, the solutions are 
approximated at more than one point simultaneously to improve the 
accuracy of the method. 

2. Derivation of Variable Step 3-Point Block BDF Method 

In a 3-point block BDF method, three solution values ,, 21 ++ nn yy  and 
,3+ny  with step size h are computed simultaneously in a block using four 

back values ,,, 123 −−− nnn yyy  and ,ny  with step size rh (Figure 1). 

 










  →← →← →←











  →← →← →← hhhrhrhrh
 

321123 +++−−− nnnnnnn yyyyyyy  

Figure 1. Interpolation points involved in the 3-point variable step 
BBDF. 

In above figure, r is the step ratio in a block. We limit the amount of step 
size increase to ensure zero stability. In this case, we consider ,2,1=r  

and ,1196
1000  which corresponds to constant step size, halving and 

increasing the step size by a factor of 1.196. The motivation behind the 
choice of each value of r are as follows; first is to optimize the total 
number of steps and the second is that each value used ensures a zero 
stable formula. The interpolating polynomial ( )xPk  of degree ,k  which 
interpolates the points ( ) ( ) ( )332233 ,,,,,, ++−−−− nnnnnn yxyxyx …  is 
defined as 

( ) ( ) ( ),3,
0

jnj
j

xyxLxP −+
=
∑= k

k

k   (2) 
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where 

( )
injn

in

ji
i

j xx
xxxL

−+−+

−+

≠
=

−
−

= ∏ 33
3

0
,k  for ( ),6,,1,0 == kk…j  

the associated polynomial for (2) can be written as 

( ) =xP  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 3

23133132333
21123

+
+++++−+−+−+

++−−−
−−−−−−

−−−−−−
n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 2

32122122232
31123

+
+++++−+−+−+

++−−−
−−−−−−

−−−−−−
+ n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 1

31211112131
32123

+
+++++−+−+−+

++−−−
−−−−−−

−−−−−−
+ n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx
321123

321123
+++−−−

+++−−−
−−−−−−

−−−−−−
+  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 1

31211112131
32123

−
+−+−+−−−−−−

+++−−
−−−−−−

−−−−−−
+ n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) 2

32221221232
32113

−
+−+−+−−−−−−

+++−−
−−−−−−

−−−−−−
+ n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx  

( )( )( )( )( )( )
( )( )( )( )( )( ) .3

33231331323
32112

−
+−+−+−−−−−−

+++−−
−−−−−−

−−−−−−
+ n

nnnnnnnnnnnn
nnnnnn yxxxxxxxxxxxx

xxxxxxxxxxxx  

(3) 

Define h
xxs n 1+−

=  and replace shxx n += +1  in (3), gives 

( ) ( )shxpxp n += +1  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 3323336

1112131
++++

−+++++++
= nyrrr

sssrsrsrs  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 2222322

2112131
++++−

−+++++++
+ nyrrr

sssrsrsrs  

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) 1121312

21112131
++++

−−+++++++
+ nyrrr

sssrsrsrs  



A NEW FORMULAE OF VARIABLE STEP 3-POINT … 53

( ) ( ) ( ) ( ) ( )
( )

ny
r

sssrsrsrs
336

2112131
−

−−++++++
+  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

13 3212
2112131

−
−−+−−

−−+++++
+ ny

rrrr
ssssrsrs  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

23 2322212
211131

−
+−−+

−−+++++
+ ny

rrrr
ssssrsrs  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

.
3332316

211121
33 −

+−−+−

−−+++++
+ ny

rrrr
ssssrsrs  (4) 

Differentiating (4) with respect to s and substituting ,1,0=s  and 2 gives 

( )
( ) ( ) ( ) ( ) 2

2
3

2
1 2322

156
32318
156

+++ ++
+++

++
++−

= nnn yrr
rryrr

rrhf  

( )
( ) ( ) ( )

( )
nn y

r
rrryrrr

rrr
3

23
1

23

18
16116

131212
518116 +++−

+
+++
−−−−

+ +  

( ) ( ) ( )
( )

( ) ( )
2313

2

32122
13

321
156

−−
++

+−+
+++

+++ nn y
rrr

ry
rrrr

rr  

( ) ( )
;

23139
12

33 −
++

++ ny
rrr

r  (5) 

( )
( ) ( ) ( ) ( ) ( ) 2

23
3

2
2 23212

1636223
3239
4832

+++ +++
++++

++
++

= nnn yrrr
rrryrr

rrhf  

( ) ( )
( ) ( ) nn y

r
rrryrr

rr
3

23
1

2

18
412113

1312
4832 ++++

++
++−

+ +  

( ) ( )
( ) ( ) ( ) ( ) ( )

23

2
13 321212

483
32

232
−−

+++

+++
++

+−
+ nn y

rrrr
rry

rrr
r  

( ) ( )
( ) ( )

;
23139

22
33 −

++

+−
+ ny

rrr
r  (6) 
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( ) ( ) ( )
( ) ( )

( ) ( ) 2
2

3
23

3 2322
9929

32316
15327014322

+++ ++
++−

+
+++
+++= nnn yrr

rryrrr
rrrhf  

( )
( ) ( )

( )
nn y

r
rrryrr

rr
3

23
1

2

6
918112

13122
9929 +++−

+
++
++

+ +  

( )
( ) ( )

( ) ( )
( ) ( )

2313 3212
39

32
329

−−
++

+−
+

++

++ nn y
rrr

ry
rrr

r  

( ) ( ) ( )
.

231313
992

33

2
−

+++

+++ ny
rrrr

rr  (7) 

Replacing ,2,1=r  and 1196
1000  into (5), (6), and (7), respectively, gives the 

coefficients of the method as given below, which are stored in the codes. 
The values of r chosen ensure the zero stability of the method. 

For ,1=r  

,7
12

35
2

35
24

7
16

7
6

35
8

35
1

1321231 +++−−−+ ++−+−+−= nnnnnnnn hfyyyyyyy  

,77
60

77
10

77
150

77
100

77
50

77
15

77
2

2311232 +++−−−+ +−+−+−= nnnnnnnn hfyyyyyyy  

.49
20

49
120

49
150

147
400

49
75

49
24

147
10

3211233 +++−−−+ ++−+−+−= nnnnnnnn hfyyyyyyy  

(8) 

For ,2=r  

321231 111
35

1184
3675

296
1225

592
245

296
21

3552
25

++−−−+ +−+−+−= nnnnnnn yyyyyyy  

,37
210

1++ nhf  

311232 2652
512

875
1536

25
16

125
12

875
16

325
1

++−−−+ −+−+−= nnnnnnn yyyyyyy  

,25
24

2++ nhf  
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11233 1441
2835

11528
11025

23056
3969

11528
405

46112
175

+−−−+ −+−+−= nnnnnn yyyyyy  

.1441
630

46112
99225

32 ++ ++ nn hfy  (9) 

For ,1196
1000=r  

231 42968750001413963716
3484013494828453731

7187500006821843556
489292613112491305

−−+ +−= nnn yyy  

nn yy 93750001012142960
17466892352592534

0006812500004922334619
0175692307765614735319

1 +− −  

32 9567051037962484
68614285232302

204807404701870
417493856709072

++ +− nn yy  

,647771495
920289798

1++ nhf  

232 524158203124606254170
497182087741631835091

152343754328926391
62007842191221649

−−+ −= nnn yyy  

nn yy 093754126717246
380166837442614

269531254733344681
608321814983298468

1 −+ −  

31 103573385591050
18883985394602

503731770911839
969923586855141

++ −+ nn yy  

,211287923
156891024

2++ nhf  

233 088328125001640503996
783310403801558646747

000075394093751451663302
68149883042472052127788

−−+ +−= nnn yyy  

 nn yy 718750002053196491
294982817738634531

88750000008705553124
766944231802312137588

1 +− −  

 21 38058881502090958
06310633805885835

34755971101368763
06310633805885835

++ +− nn yy  

.71314045754
5278170546

3++ nhf  (10) 
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3. Order of the Method 

This section derives the order of the method corresponding to the 
equations in (8), (9), and (10). First, we consider the method (8) while 

.1=r  It can be rewritten as 

,7
12

35
2

35
24

7
16

7
6

35
8

35
1

1321123 ++++−−− =−++−+−+ nnnnnnnn hfyyyyyyy  

321123 77
10

77
150

77
100

77
50

77
15

77
2

+++−−− ++−+−+− nnnnnnn yyyyyyy  

,77
60

2+= nhf  

321123 49
120

49
150

147
400

49
75

49
24

147
10

+++−−− +−+−+−+ nnnnnnn yyyyyyy  

.49
20

3+= nhf   (11) 

The matrix form of (11) is associated with  
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100
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15

7
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7
6
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8

147
1000

77
200

35
100

 

.
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077
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120
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150

77
10177

150
35
2

35
241

3

2

1

3

2

1











































=











































−

−

−

+

+

+

+

+

+

+

n

n

n

n

n

n

f

f

f

y

y

y

(12) 

Let 
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49
75
77
50
7
6

,

49
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15
35
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,
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10
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1
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,

1

77
10
35
2

,

49
120

1

35
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,

49
150

77
150

1

,

147
400
77

100
7

16

8765
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0
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0

77
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0

,

0

0

7
12
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=β  

The linear difference operator L is defined by 

( )[ ] [ ( ) ( )].,
8

0
jhxyhjhxyhxyL jj

j
+′β−+α= ∑

=

  (13) 

Expanding the function ( )jhxy +  and its derivative ( )jhxy +′  as Taylor 

series around x and substituting in (13) leads to 

( )[ ] ( ) ( )( ) ( )( ) ( )( ) ,; 22
2

1
10 "" +++++= xyhCxyhCxhyCxyChxyL qq

q   (14) 

where qC  are constants. The difference operator (13) and the associated 

method (11) is considered of order p if 010 ==== pccc "  and 

.01 ≠+pc  In this case, 

,0
8

0
0 =α= ∑

=
j

j
c  

( ) ,0
8

0

8

0
1 =β−α= ∑∑

==
j

j
j

j
jc  

( )
( ) ,0!2

8

0

28

0
2 =β−

α
= ∑∑

==
j

j

j

j
j

j
c  
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#  

( ) ( )
,0!4!5

48

0

58

0
5 =

β
−

α
= ∑∑

==

j

j

j

j

jj
c  

( ) ( )
,0!5!6

58

0

68

0
6 =

β
−

α
= ∑∑

==

j

j

j

j

jj
c  

( ) ( )
.

0

0

0

343
20

539
10
245
4

!6!7

68

0

78

0
7





















≠























−

−

=
β

−
α

= ∑∑
==

j

j

j

j

jj
c  

Therefore, the order of the method (8) is 6 and the error constant is 
determined by 

.

343
20

539
10
245
4

7























−

−

=c  

Applying a similar procedure to the method (9) and (10) shows that the 
order of them is 6. 

4. Stability of the 3-Point Block BDF Method 

In this section, we discuss about the conditions for the stability of the 
method in (8), (9), and (10). We start by the following definitions: 

Definition 1 ([9]). A method is said to be zero stable if all the roots of 
first characteristic polynomial have modulus less than or equal to unity 
and those of modulus unity are simple. 

Definition 2 ([9]). A method is said to be absolutely stable in a 
region R for a given λh  if for that ,λh  all the roots sr  of stability 

polynomial ( ) ( ) ( ) 0, =λσ−ρ=λπ rhrhr  satisfy .,,2,1,1 k…=< srs  
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Definition 3 ([5]). A method is said to be A-stable if the stability 
region covers the entire negative left half plane. 

The stability regions of the method are determined by substituting 
linear test problem 

( ),complex,0 λ<λλ=′ yy  

into Equations (8), (9), and (10). We obtain the following form: 

,21 −− += mmm CYBYAY   (15) 

where ,, BA  and C are the matrix coefficients and can be specified based 
on the coefficients in (8), (9), and (10), respectively. 

We define ,mrn =  where m is the block number and r is the number 
of points in the block. Here, 3=r  and .3mn =  Hence, 

( )

( )

( )

;; 1

2

313

213

113

1

3

2

1

33

23

13
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−
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+

+

+

+

n

n

n
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m

m

n

n

n

m

m

m

m

y

y

y

y

y

y

Y

y

y

y

y

y

y

Y  

and 

( )

( )

( )

.

3

4

5

323

223

123

2





















=





















=

−

−

−

+−

+−

+−

−

n

n

n

m

m

m

m

y

y

y

y

y

y

Y  

The stability polynomial of the method, ( ),ˆ, htR  where λ= hĥ  is defined 
by 

( ),det 2 CBtAt −−  

while the absolute stability region of the method is determined by solving 

( ) 0det 2 =−− CBtAt  in the λh  plane. The following gives the absolute 
stability regions of the method for the chosen step sizes, ,2,1=r  and 

,1196
1000  respectively, 
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( ) ( ) htthttthtR ˆ
26411
20640

2401
1852ˆ

26411
232

2401
40

79233
1ˆ,i 44332 ++++−=  

255524 ˆ
26411

109920ˆ
26411
72216

79233
286568ˆ

26411
2400 hthttht −−−+  

362666 ˆ
26411
14400ˆ

3773
8880ˆ

26411
109036

3773
10673 hththtt −+−+  

;0=  (16) 

( ) ( ) 4332
1332925
359023ˆ

1066340
243

42653600
22257

42653600
1ˆ,ii thttthtR +++−=  

htththt ˆ
1332925

11586078
20350

157887ˆ
106634

2205ˆ
10663400
2029923 55244 −−++  

266625 ˆ
24235

202365ˆ
121175

1506528
266585

1996367ˆ
266585

1460592 hthttht +−+−  

36 ˆ
53317

127008 ht−  

;0=  (17) 

( ) ( ) 2
008671875000833094421300576769262195417142

75554499343141245762672279181364796263ˆ,iii thtR −=  

3
008671875000833094421300576769262195417142

8357434499901324788720576621439490509363 t+  

ht ˆ
28125000245362548863765020282310965412

927579152884699207066011545569742343 3+  

4
86718750833094421300576769262195417142
29351187506657711484542619602480401684 t+  

ht ˆ
46875000332377685502307077078781668568

358021703277859673210765616691150286772 4+  

24 ˆ
25167353515625627182261878431779
2620463623226383263312801303270 ht+  

5
8750173180429688369132331405066970
2327498180765467967257215154961634 t−  

ht ˆ
375865902148441845661657025334854

9653237322487629897422641297010472 5−  
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25 ˆ
1875932951074220922830823512667427

29444654822596945789110941643495804 ht−  

6
850348535435523696784630
181693348903779226662658 t+  

ht ˆ
923341946224978763596971445

5240796859219440591265535028 6−  

26 ˆ
4251524267717761848392315
0299682525421973556038538 ht+  

36 ˆ
9768579211173179617570709
9401630430876084075346290 ht−  

.0=  (18) 

For zero stability, we set 0ˆ =h  in (16), (17), and (18) to obtain the first 
characteristic polynomial as 

( ) ;079233
1

2401
40

2401
1852

79233
286568

3773
10673i 23456 =−++− ttttt  (19) 

( ) 3456
42653600

22257
1332925
359023

20350
157887

266585
1996376ii tttt ++−  

;042653600
1 2 =− t   (20) 

( ) 6
850348535435523696784630
181693348903779226662658iii t+  

5
8750173180429688369132331405066970
2327498180765467967257215154961634 t−  

4
86718750833094421300576769262195417142
29351187506657711484542619602480401684 t+  

3
008671875000833094421300576769262195417142

8357434499901324788720576621439490509363 t+  

2
008671875000833094421300576769262195417142

75554499343141245762672279181364796263 t−  

.0=  (21) 
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The roots obtained from (19), (20), and (21) are listed below, respectively, 

( ) ,4300007327983.0,0,0,30204144682.0i ===−= tttt  

;1,2982439521.0 == tt  

( ) ,80620000439345.0,0,0,460018814075.0ii ===−= tttt  

;1,80378746222.0 == tt  

( ) ,970013879436.0,0,0,50355940786.0iii ===−= tttt  

.1,5041742684.0 == tt  

As all the roots have modulus less than or equal to unity, so the method 

is zero stable when ,2,1=r  and .1196
1000  The stability regions of the 

method when ,2,1=r  and 1196
1000  are shown in Figures 2, 3, and 4. 

 

Figure 2. Stability region when .1=r  
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Figure 3. Stability region when .2=r  

 

Figure 4. Stability region when .1196
1000=r  
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The stability region while 2=r  in Figure 3 covers the whole 
negative left half plane, so the method is considered as A-stable. The 

stability regions when 1=r  and ,1196
1000=r  which are shown in Figure 2 

and Figure 4, respectively, almost cover the entire negative left half 
plane, hence the method is stiffly stable. 

To obtain ,1196
1000=r  different values of r have been tested. Zero 

stability and absolute stability of the method for the r tested are listed in 
Table 1. 

Table 1. The values of r tested for the 3-point 

r r
1  Status of the method 

   2
1  2 not zero stable 

19
10=r  1.9 not zero stable 

8
5=r  1.6 not zero stable 

3
2=r  1.5 zero stable not absolutely stable 

7
5=r  1.4 zero stable not absolutely stable 

13
10=r  1.3 zero stable not absolutely stable 

6
5=r  1.2 zero stable not absolutely stable 

1198
1000=r  1.1198 zero stable not absolutely stable 

1197
1000=r  1.1197 zero stable not absolutely stable 

1196
1000=r  1.1196 zero stable and absolutely stable 
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From Table 1, it is seen that when ,19
10,2

1=r  and 8
5  the method is 

not zero stable as it does not satisfy the Definition 1. Therefore, the         
3-point block BDF of variable step size formulated by [1], is not 

acceptable as the method is not zero stable when .2
1=r  Choosing 

,6
5,13

10,7
5,3

2=r  ,1198
1000  and 1197

1000  gives a zero stable method not 

absolutely stable. For example, if we set 00.3ˆ −=h  in the stability 

polynomials obtained for 1197
1000=r  and solve it for t, it gives at least one 

root bigger than one. Therefore, by the Definition 2, the method is not 

absolutely stable for .1197
1000=r  Setting different amount of ĥ  for 

,7
5,13

10,6
5,1198

1000=r  and 3
2  gives a similar results, which shows that 

the method is not absolutely stable in the r chosen. 

Figures 5-10 are provided to show the stability regions when 

,7
5,13

10,6
5,1198

1000,1197
1000=r  and .3

2  
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Figure 5. Stability region when .1197
1000=r  

 

Figure 6. Stability region when .1198
1000=r  
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Figure 7. Stability region when .6
5=r  

 

Figure 8. Stability region when .13
10=r  
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Figure 9. Stability region when .7
5=r  

 

Figure 10. Stability region when .3
2=r  
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5. Implementation of the 3-Point Block BDF Method 

Newton’s iteration is applied for the implementation of the method. 

First, we define the error in the ( )thi  iteration as 

( ) ( ) ( ) ,error eapproximatexact
iii yy −=  

and the maximum error is given by 

( ( ) ).errormax
1

i
TNSi

MAXE


=  

The abbreviation TNS gives the total number of steps. 

Let ( ) 3,2,11 =+
+ jy i

jn  denote the ( )th1+i  iterative values of ,jny +  

define 

( ) ( ) ( ) .3,2,1,11 =−= +
+
+

+
+ jyye i

jn
i

jn
i

jn  

The 3-point block BDF method can be written as 

,13121111 η+γ+β+α= ++++ nnnn yyhfy  

,23212222 η+γ+β+α= ++++ nnnn yyhfy  

,32313333 η+γ+β+α= ++++ nnnn yyhfy   (22) 

where ,, ii βα  and 3,2,1, =γ ii  represent the coefficients when ,2,1=r  

and ,1196
1000  respectively. 21, ηη  and 3η  represent the back values. Let  

,111312111 η−α−γ−β−= ++++ nnnn hfyyyF  

,222322122 η−α−γ−+β−= ++++ nnnn hfyyyF  

.333323133 η−α−+γ−β−= ++++ nnnn hfyyyF   (23) 

Newton’s iteration is defined as 

( ) ( ) [
( )

( ) ] ( ) .3,2,1,11 =
∂

∂
−= −

+
+

+
+ jF

y

F
yy i

ji
jn

i
ji

jn
i

jn  



NAGHMEH ABASI et al. 70

Hence, Newton’s iteration can be defined in the form 

( )

( )
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Equation (24) is equivalent to 

( )
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Let J denote the Jacobian matrix in (25), then 
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(26) 

Therefore, the values of ( ) 3,2,11 =+
+ je i

jn  can be approximated and the 

solutions ( ) 3,2,11 =+
+ jy i

jn  are computed from 
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( ) ( ) ( ) ,3,2,1,11 =+= +
++

+
+ jeyy i

jn
i

jn
i

jn  

when ,2,1=r  and .1196
1000  

Choosing the step size 

Choosing the step size is an important factor in the reduction of the 
number of iterations. The step size selection falls into three strategies. 
Using a prescribed tolerance value (TOL), an initial step size is 
determined. A test is conducted to compare the local truncation error 
(LTE) with TOL, where 

( ) ( ) .6,1
33 =−= −

++ kkk
nn yyLTE  

If the LTE < TOL, the step is considered as successful (IST). At this step, 
the previous step size is maintained (corresponding to using 1=r ) and 
the following test will be conducted: 

( ) ,
1

oldnew kLTE
TOLhch ××=  

where c is the safety factor, k  is the order of the method and is equal to 
6. newh  and oldh  are the step size for the current and previous blocks, 

respectively. Here c is 0.5. If ( ) ,196.1 oldnew hh ×>  then ( ) ×= 196.1newh  

.oldh  This corresponds to using the formula .1196
1000=r  On the other 

hand, if LTE > TOL, the step size is halved and we regard this step as a 
failed step (ISFT) (corresponding to the formula when 2=r ). 

6. Numerical Results 

In this section, the numerical results of the 3-point block BDF 

method of order 6 on a set of stiff problems for tolerances ,10,10 42 −−  and 
610−  are tabulated and compared with MATLAB’s stiff numerical solvers 

for ODEs as ode15s and ode23s [15]. The maximum global error and the 
total number of steps for each problem are given. The test problems and 
their solutions are listed as 
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Problem 1 ([18]). 

( ) .100,00,2420  xyyy =+−=′  

Exact solution 

( ) .5
6

5
6 20xexy −−=  

Problem 2 ([6, 8]). 

( ) ( ) .100,10,1100  xyxyy =+−−=′  

Exact solution 

( ) .100 xexy x += −  

Eigenvalue: .100−=λ  

Problem 3 ([8]). 

( ) ,200,10,10001002 1
2
211  xyyyy =+−=′  

( ) ( ) .00,1 22212 =+−=′ yyyyy  

Exact solution 

,2
1

xey −=  

.2
xey −=  

Eigenvalues: 21 −=λ  and .12 −=λ  

Problem 4 ([18]). 

( ) ,100,10,1998998 1211  xyyyy =+=′  

( ) .20,1999999 2212 =−−=′ yyyy  

Exact solution 

,2 1000
1

xx eey −− −=  

.1000
2

xx eey −− +−=  
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Eigenvalues: 11 −=λ  and .10002 −=λ  

The notations used in the tables, are listed below: 

3BBDF        3-point variable step block BDF method. 

TNS             the total number of steps. 

TOL             tolerance value. 

MAXE          maximum global error 309. 

Table 2. Comparison for Problem 1 

TOL Method TNS MAXE 

210−  ode15s 29 8.700e-3 

 ode23s 19 4.800e-3 

 3BBDF 97 2.1678e-6 

410−  ode15s 61 1.7046e-4 

 ode23s 43 2.7400e-4 

 3BBDF 123 2.1979e-8 

610−  ode15s 96 2.7175e-6 

 ode23s 148 1.3309e-5 

 3BBDF 150 1.1389e-10 

Table 3. Comparison for Problem 2 

TOL Method TNS MAXE 

210−  ode15s 28 8.4000e-3 

 ode23s 19 4.5000e-3 

 3BBDF 105 1.0775e-5 

410−  ode15s 60 1.6621e-4 

 ode23s 42 2.5683e-4 

 3BBDF 131 1.1068e-7 

610−  ode15s 100 2.7506e-6 

 ode23s 143 1.2514e-5 

 3BBDF 158 1.3571e-9 
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Table 4. Comparison for Problem 3 

TOL Method TNS MAXE 

210−  ode15s 29 5.2000e-3 

 ode23s 25 1.1000e-3 

 3BBDF 92 1.7933e-7 

410−  ode15s 55 8.5506e-5 

 ode23s 118 6.9774e-5 

 3BBDF 117 4.9733e-9 

610−  ode15s 197 1.0790e-6 

 ode23s 773 2.8081e-6 

 3BBDF 144 9.6267e-10 

Table 5. Comparison for Problem 4 

TOL Method TNS MAXE 

210−  ode15s 38 1.760e-2 

 ode23s 23 7.3000e-3 

 3BBDF 118 1.0267e-4 

410−  ode15s 90 1.8559e-4 

 ode23s 68 3.6837e-4 

 3BBDF 144 1.0882e-6 

610−  ode15s 162 3.9569e-6 

 ode23s 288 1.7039e-5 

 3BBDF 171 1.1006e-8 

From Tables 2-5, it can be observed that the maximum global error 
for each given tolerance has decreased in the 3-point block BDF method 
which shows that the method converges faster for all the problems tested 
in comparison with ode15s and ode23s. 

 

 



A NEW FORMULAE OF VARIABLE STEP 3-POINT … 75

7. Conclusion 

A formulation of a block BDF that computes three points 
concurrently for the solution of stiff ODEs is considered in this paper. 
The method is analyzed and is found to be A-stable when 2=r  and 

stiffly stable when 1=r  and .1196
1000=r  The results obtained indicate 

that the code developed is a better solver for stiff problems in reducing 
the error in comparison with stiff MATLAB’s solvers. In fact, the method 
outperformed the ode15s and ode23s in terms of accuracy. 
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